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Abstract. Structural and dynamic properties of suspensions of colloidal particles 
have been studied extensively by static and dynamic scattering experiments. The 
theoretical analysis has been performed by applying and extending equilibrium and 
non-equilibrium theories of simple liquids to the case of interacting Brownian par- 
ticles. A fairly well developed understanding of monodisperse systems has emerged 
for highly charged colloids and for systems with very short-range interactions. In 
this contribution two extensions will be discussed: (i) static scattering from poly- 
disperse charge-stabilized systems, and (ii) the collective diffusion of weakly charged 
monodisperse particles, for which hydrodynamic 3s well as electrostatic interactions 
are of importance. 

1. Introduction 

The determination of structural and dynamical properties of suspensions of colloidal 
particles provides interesting and important applications and extensions of methods 
developed for simple liquids. Since colloidal suspensions and similar systems such as 
solutions of macromolecules and polymers, micellar solutions and microemulsions are 
of considerable importance in basic research as well as for technological applications, a 
wealth of experimental data  is available. Among the experimental methods scattering 
experiments play an important role, as in other areas of condensed matter physics. 
Information about the structure is obtained from the angle dependence of the total 
scattered intensity, I(k), whereas the dynamics of the scattering centres gives rise t o  
fluctuations in the scattered radiation. Since the macroparticles scatter much more 
strongly then the solvent, the latter can be treated as an inert background and the 
time-dependent correlation function obtained by a dynamic scattering experiment can 
be expressed as 

I ( b , t )  = nf2P(k)S(t,t) 

Here it is assumed that all macroparticles are identical (monodisperse system); their 
number density is denoted by TI = N / V  , f is proportional to  the volume of the 
particles and P ( k )  is the form factor. For spheres, P ( k )  = [Sj,(ka/2)/kal2, where a 
is the diameter and jl(x) the spherical Bessel function. Besides these single-particle 
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properties, I(k, t )  depends on the correlations between the macroparticles, described 
by the dynamic structure factor 

Here, r i ( t )  is the position of particle i a t  time t and the angle brackets denote an 
ensemble average. If in equation (1) t = 0,  one obtains the result of the static scat- 
tering experiment, and S ( k , t  = 0) = S ( k )  is the static structure factor. Since S ( k )  
is essentially the Fourier transform of the radial distribution function g ( r ) ,  the inte- 
gral equation methods of liquid state theory can be used to  calculate g ( T )  from the 
interaction potential V ( T ) .  Using the effective temperature- and density-dependent 
interaction potential (the DLVO potential), the results of the static experiments are 
related, by this procedure, to  the functional form and to the parameters on which 
the effective potential depends. This method has been used to  determine the effec- 
tive charge on colloidal particles [l] or on micelles [2], assuming that the interaction 
potential is of the screened Coulomb type and that the system is monodisperse. The 
latter assumption is, however, often not fulfilled; instead there will be a distribution 
of sizes and of charges, and in the next section we will present results for the static 
scattering intensity of polydisperse systems. It will be shown in section 2 that  several 
essential features of S ( k )  are substantially changed as a function of the width of the 
size and charge distribution. 

With regard to  the dynamics the calculation of S ( k , t )  requires an appropriate 
transport equation. Since the dynamics of typical colloidal particles is much slower 
than that of the solvent molecules, the separation of time scales can be used to  simplify 
the Liouville equation to  the level where only the momenta and coordinates of the 
macroparticles remain as dynamical variables; the resulting fluid of macroparticles 
is then described by a many-particle Fokker-Planck equation [3]. Because of the 
frequent collisions between macroparticles and solvent molecules the momentum of 
the macrofluid is not conserved, so that for most purposes the description can be 
further simplified to  the level of the Smoluchowski equation [3], where the coordinates 
of the macroparticles are the only dynamical variables. The dynamics of the colloidal 
suspension is thus described as a fluid of interacting Brownian particles within the fluid 
of the solvent molecules. The main difference compared with a simple fluid arises from 
the presence of the solvent; it provides a friction coefficient, CO, for each parcicle and 
i t  gives rise to  a hydrodynamic interaction between macroparticles in addition to  the 
potential V ( T )  of direct interaction. 

From the measurement of the dynamic structure factor S(k ,  1 )  one deduces directly 
a generalized diffusion function 

~ ( k , t )  = -k-’dlnS(k,t)/dt  (3) 

which reduces to the collective diffusion coefficient D, in the hydrodynamic limit. 
For arbitrary times, D ( k , t )  is a rather complicated object, since it incorporates all 
the rearrangements and relaxation mechanisms of the macroparticles. These memory 
effects have so far been calculated only for strong electrostatic interactions, where 
hydrodynamic interactions can be neglected [4]. If hydrodynamic interactions become 
very important, as in the case of hard-sphere systems, results for D ( k ,  t )  are available 
only for short times [ 5 ] .  For systems such as weakly charged colloidal particles and 
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ionic micelles, however, i t  is necessary to  take both types of interactions, the repulsive 
screened Coulomb and the hydrodynamic interactions, into account [6,7]. In section 3 
of this paper we will present results for the collective diffusion coefficient of such 
systems. 

2. Structural properties of polydisperse suspensions 

If there is a distribution of sizes and charges of macroparticles, equation (1) has t o  
be generalized, since f and P ( k )  depend on the size, and in equation (2) particles i 
and j will in general belong t o  different parts of the distribution. Representing the 
continuous size distribution by a mixture of p components, the scattered intensity can 
be written as [8] 

-- 
I ( H )  = nf2 P(k)S"(H) (4) 

where 
tion and 

and P(k) are averages of f, and P,(k)  , Q = 1,. . . , p ,  over the size distribu- 

Here, B i ( k )  = P,(k)  and S m P ( k )  are partial structure factors 

where 2, denotes the mole fraction of species cy and k a p ( k )  the Fourier transform 
of the partial total correlation function h ( r )  = gap(r) - 1. The function gap(r)  is QP related to  the probability of finding a particle of species ,# a t  T given that  there is a 
particle of species a a t  the origin. 

In a polydisperse system there are two competing mechanisms which determine 
the scattered intensity I ( k )  as compared to  the monodisperse case. On the one hand 
t8he larger particles of the distribution will contribute to  SM(k) more strongly due to  
the presence of f, N V, - ut in equation ( 5 ) .  On the other hand, the density fluc- 
tuations, contained by Sop(k )  at  the lower end of the distribution, are expected t o  
be stronger [9]. To settle this problem we solved numerically the coupled Ornstein- 
Zernike equations for the pcomponent system (with p 5 10) with the thermodynami- 
cally consistent Rogers-Young (RY) closure scheme [lo]. For the interaction potential 
we took the screened Coulomb potential between spheres of diameters and charges 
U, , z ,  and u p ,  z p .  In figure 1 we present results for S'(H) for systems with a fixed 
total volume fraction C$ but different widths, s, of the size distribution. I t  should be 
noted that  the condition of constant C$ is different from keeping the number density 
constant. We assumed a continuous Schulz distribution for the particle size and we 
replaced it by a pcomponent histogram. The mean particle diameter ( U )  is the same 
for all systems and the charge z(,,) on the particles of size ( U )  is also fixed. For the 
particles with 6, # ( U )  we made the assumption that the charges scale as the surface 
areas of the particles, z ,  - U:. There are three features t o  be noted: (i) the height 
of the principal peak of S'(k) is reduced, its position is shifted t o  lower values of IC 
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and the peak is broadened; (ii) the oscillations following the first peak are progres- 
sively washed out; (iii) for small k values SM(k)  increases with s. In contrast to  the 
monodisperse case, the peak position of S M ( k )  for s # 0 is no longer proportional to  

the peak height is no longer a simple measure of the order in the system and 
SM(0) is not simply related to the compressibility K ,  of the system. With regard to 
the last point, we have calculated KT from the S,,(O) and found that for a distri- 
bution with a standard deviation of only 10% SM(0) is already increased by a factor 
of three compared with the monodisperse case, whereas KT is practically unchanged. 
There is a slight decrease of KT with increasing s, indicating that the system becomes 
somewhat stiffer with polydispersity. These results show that thermodynamic data 
cannot directly be deduced from the scattered intensity at k = 0 for polydisperse sys- 
tems. Further studies [ll] have shown that experimental data for S M ( k )  can often be 
better described by allowing for some polydispersity, as compared to an interpretation 
in terms of a monodisperse suspension. 
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Figure 1. Static structure factor S'(k) as determined from the RY scheme for 
different degrees of polydispersity. The system is specified by a fixed volume fraction 
(4) = 1.1 x a mean particle diameter ( U )  = 50 nm, a charge on the particle of 
diameter ( U )  of z ( ~ )  = 220 e and by a Bjerrum length of 6.961 A. 

3. Collective diffusion in the presence of hydrodynamic interactions 

The effects of hydrodynamic interactions have so far been extensively studied for hard- 
sphere systems. Precise results are known for the diffusion coefficients to linear order 
in the volume fraction 4 for monodisperse systems [12]. At higher orders in 4 it is 
necessary to  consider many-body hydrodynamics [13]. In order to avoid the calcu- 
lation of the complicated memory effects, which depend on both the direct and the 
hydrodynamic interactions, we consider the short-time limit of the diffusion function, 
equation (3). This quantity, which is essentially the initial decay of the experimentally 
determined correlation function, can be expressed as 

D ( k ,  0 )  =: D(k) = D o H ( k ) / S ( k )  (7) 
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where 

Here, Do = ICBT/Co is the diffusion coefficient a t  infinite dilution and p i j  are mobil- 
ity tensors which provide the relation between a force on particle j and the resulting 
velocity of particle i .  These functions depend on the positions { T ~ }  of all particles. 
Using expressions for the mobility tensors for many-particle hydrodynamic interac- 
tions, Beenakker has derived [5,14] an expression for H ( k ) ,  which still depends on the 
structure of the suspension through the presence of the radial distribution function 
g ( r )  or the static structure factor S ( k ) .  We have used this expression together with 
the Ornstein-Zernike-RY scheme for S ( k )  to  calculate H ( k )  and therefore D ( k ) .  Good 
agreement has been found with experimental data on weakly charged colloids [7]. 
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Figure 2 .  Dependence of the collective diffusion on the volume fraction. Particles 
have a diameter of 50 A and a charge of 20 e. The different curves refer to the 
following concentrations of an additional 1:1 electrolyte: curve (a), 0.001 M;  curve (b), 
0.002 M; curve (c), 0.005 M; curve (d) ,  0.01 M;  curve (e), 0.02 M; curve (f), 0.1 M. 
Curve (g) shows, for comparison, the corresponding hard-sphere results. 

Another important case is provided by ionic micelles [6,15]. Their collective dif- 
fusion has been studied by light scattering a t  moderate volume fractions and as a 
function of salt added to  the solution. By changing the salt content the repulsive 
interaction is changed, and therefore a variation of the diffusion is expected, whereas 
the hydrodynamic interactions remain the same. Since typical length scales in micellar 
systems are much smaller than the wavelength of light, it is sufficient to  consider the 
limit IC = 0 in equation (7). Figure 2 shows the results for the diffusion coefficient for 
a typical micellar system as a function of volume fraction 4 for different amounts of 
added salt. As can be seen, the dependence of D(0)  on 4 does not show a unique be- 
haviour, but depends strongly on the system parameters. This can be traced back [16] 
t o  the interplay between an enhancement of diffusion by the lowered compressibility 
(the denominator S(0)  in equation (7) decreases with increasing 4) and an inhibition 
of diffusion due to  hydrodynamic interactions (the numerator H ( 0 )  decreases with 
increasing 4). In the case of weak screening of the electrostatic repulsion (curve (a) of 
figure 2) the compressibility decreases more strongly with increasing 4 at  low volume 
fractions than the hydrodynamic function H(O) ,  thus causing t,he st,rong increase of 
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D ( 0 ) .  At higher volume fractions the further decrease of S(0) is only weak and the 
hydrodynamic effects slow down the diffusion. As a result a maximum in D ( 0 )  versus 
4 occurs. Such kind of behaviour has been observed experimentally [6,15]. At higher 
salt concentrations the decreases of S(0)  and H ( 0 )  become nearly comparable, but the 
decrease of S(0 )  remains somewhat stronger, thus always leading to an enhancement 
of collective diffusion, as long as the direct interaction is repulsive. 

There are clearly some limitations to  the application of these results to  real ionic 
micelles. We have assumed that the shape and the effective charge of the micelles are 
independent of volume fraction and of the amount of added salt. Furthermore, the 
counter-ions and salt ions have not been treated explicitly but only through the Debye 
screening parameter of the direct interactions. Whereas a more realistic treatment of 
ionic micelles is still missing, we have shown that the simplified model is sufficient to  
reproduce the main characteristic features of the experimental data.  
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